383 research outputs found

    Saturn integrated circuit reliability test program Quarterly progress report, Jul. - Sep. 1966

    Get PDF
    Saturn integrated circuit reliability tests performed to improve failure mode screenin

    Sexual Robots: The Social-Relational Approach and the Concept of Subjective Reference

    Get PDF
    In this paper we propose the notion of “subjective reference” as a conceptual tool that explains how and why human-robot sexual interactions could reframe users approach to human-human sexual interactions. First, we introduce the current debate about Sexual Robotics, situated in the wider discussion about Social Robots, stating the urgency of a regulative framework. We underline the importance of a social-relational approach, mostly concerned about Social Robots impact in human social structures. Then, we point out the absence of a precise framework conceptualizing why Social Robots, and Sexual Robots in particular, may modify users’ sociality and relationality. Within a psychological framework, we propose to consider Sexual Robots as “subjective references”, namely objects symbolically referring to human subjects: we claim that, for the user experience, every action performed upon a Sexual Robot is symbolically directed toward a human subject, including degrading and violent practices. This shifting mechanism may transfer the user relational setting from human-robot interactions to human-human interactions

    Defect-control of conventional and anomalous electron transport at complex oxide interfaces

    Get PDF
    Using low-temperature electrical measurements, the interrelation between electron transport, magnetic properties, and ionic defect structure in complex oxide interface systems is investigated, focusing on NdGaO3/SrTiO3 (100) interfaces. Field-dependent Hall characteristics (2–300 K) are obtained for samples grown at various growth pressures. In addition to multiple electron transport, interfacial magnetism is tracked exploiting the anomalous Hall effect (AHE). These two properties both contribute to a nonlinearity in the field dependence of the Hall resistance, with multiple carrier conduction evident below 30 K and AHE at temperatures ≲10  K. Considering these two sources of nonlinearity, we suggest a phenomenological model capturing the complex field dependence of the Hall characteristics in the low-temperature regime. Our model allows the extraction of the conventional transport parameters and a qualitative analysis of the magnetization. The electron mobility is found to decrease systematically with increasing growth pressure. This suggests dominant electron scattering by acceptor-type strontium vacancies incorporated during growth. The AHE scales with growth pressure. The most pronounced AHE is found at increased growth pressure and, thus, in the most defective, low-mobility samples, indicating a correlation between transport, magnetism, and cation defect concentratio

    Neutralization of SARS-CoV-2 by highly potent, hyperthermostable, and mutation-tolerant nanobodies

    Get PDF
    Monoclonal anti-SARS-CoV-2 immunoglobulins represent a treatment option for COVID-19. However, their production in mammalian cells is not scalable to meet the global demand. Single-domain (VHH) antibodies (also called nanobodies) provide an alternative suitable for microbial production. Using alpaca immune libraries against the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein, we isolated 45 infection-blocking VHH antibodies. These include nanobodies that can withstand 95°C. The most effective VHH antibody neutralizes SARS-CoV-2 at 17–50 pM concentration (0.2–0.7 µg per liter), binds the open and closed states of the Spike, and shows a tight RBD interaction in the X-ray and cryo-EM structures. The best VHH trimers neutralize even at 40 ng per liter. We constructed nanobody tandems and identified nanobody monomers that tolerate the K417N/T, E484K, N501Y, and L452R immune-escape mutations found in the Alpha, Beta, Gamma, Epsilon, Iota, and Delta/Kappa lineages. We also demonstrate neutralization of the Beta strain at low-picomolar VHH concentrations. We further discovered VHH antibodies that enforce native folding of the RBD in the E. coli cytosol, where its folding normally fails. Such “fold-promoting” nanobodies may allow for simplified production of vaccines and their adaptation to viral escape-mutations

    Rendering polyurethane hydrophilic for efficient cellulose reinforcement in melt-spun nanocomposite fibers

    Get PDF
    Many commodity plastics, such as thermoplastic polyurethanes (PUs), require reinforcement for use as commercial products. Cellulose nanocrystals (CNCs) offer a “green” and scalable approach to polymer reinforcement as they are exceptionally stiff, recyclable, and abundant. Unfortunately, achieving efficient CNC reinforcement of PUs with industrial melt processing techniques is difficult, mostly due to the incompatibility of the hydrophobic PU with hydrophilic CNCs, limiting their dispersion. Here, a hydrophilic PU is synthesized to achieve strong reinforcement in melt‐processed nanocomposite fibers using filter paper‐sourced CNCs. The melt‐spun fibers, exhibiting smooth surfaces even at high CNC loading (up to 25 wt%) indicating good CNC dispersion, are bench‐marked against solvent‐cast films—solvent processing is not scalable but disperses CNCs well and produces strong CNC reinforcement. Mechanical analysis shows the CNC addition stiffens both nanocomposite films and fibers. The stress and strain at break, however, are not significantly affected in films, whereas adding CNCs to fibers increases the stress‐at‐break while reducing the strain‐at‐break. Compared to earlier studies employing a hydrophobic (and stiffer) PU, CNC addition to a hydrophilic PU substantially increases the fiber stiffness and strength. This work therefore suggests that rendering thermoplastics more hydrophilic might pave the way for “greener” polymer composite products using CNCs

    How AI Systems Challenge the Conditions of Moral Agency?

    Get PDF
    The article explores the effects increasing automation has on our conceptions of human agency. We conceptualize the central features of human agency as ableness, intentionality, and rationality and define responsibility as a central feature of moral agency. We discuss suggestions in favor of holding AI systems moral agents for their functions but join those who refute this view. We consider the possibility of assigning moral agency to automated AI systems in settings of machine-human cooperation but come to the conclusion that AI systems are not genuine participants in joint action and cannot be held morally responsible. Philosophical issues notwithstanding, the functions of AI systems change human agency as they affect our goal setting and pursuing by influencing our conceptions of the attainable. Recommendation algorithms on news sites, social media platforms, and in search engines modify our possibilities to receive accurate and comprehensive information, hence influencing our decision making. Sophisticated AI systems replace human workforce even in such demanding fields as medical surgery, language translation, visual arts, and composing music. Being second to a machine in an increasing number of fields of expertise will affect how human beings regard their own abilities. We need a deeper understanding of how technological progress takes place and how it is intertwined with economic and political realities. Moral responsibility remains a human characteristic. It is our duty to develop AI to serve morally good ends and purposes. Protecting and strengthening the conditions of human agency in any AI environment is part of this task.Peer reviewe

    Robotics and automation in the city: a research agenda

    Get PDF
    Globally cities are becoming experimental sites for new forms of robotic and automation technologies applied across a wide variety of sectors in multiple areas of economic and social life. As these innovations leave the laboratory and factory, this paper analyses how robotics and automation systems are being layered upon existing urban digital networks, extending the capabilities and capacities of human agency and infrastructure networks, and reshaping the city and citizen’s everyday experiences. To date, most work in this field has been speculative and isolated in nature. We set out a research agenda that goes beyond analysis of discrete applications and effects, to investigate how robotics and automation connect across urban domains and the implications for: differential urban geographies, the selective enhancement of individuals and collective management of infrastructures, the socio-spatial sorting of cities and the potential for responsible urban innovation
    • …
    corecore